Allele-specific quantitative proteomics unravels molecular mechanisms modulated by cis-regulatory PPARG locus variation
نویسندگان
چکیده
Genome-wide association studies identified numerous disease risk loci. Delineating molecular mechanisms influenced by cis-regulatory variants is essential to understand gene regulation and ultimately disease pathophysiology. Combining bioinformatics and public domain chromatin information with quantitative proteomics supports prediction of cis-regulatory variants and enabled identification of allele-dependent binding of both, transcription factors and coregulators at the type 2 diabetes associated PPARG locus. We found rs7647481A nonrisk allele binding of Yin Yang 1 (YY1), confirmed by allele-specific chromatin immunoprecipitation in primary adipocytes. Quantitative proteomics also found the coregulator RING1 and YY1 binding protein (RYBP) whose mRNA levels correlate with improved insulin sensitivity in primary adipose cells carrying the rs7647481A nonrisk allele. Our findings support a concept with diverse cis-regulatory variants contributing to disease pathophysiology at one locus. Proteome-wide identification of both, transcription factors and coregulators, can profoundly improve understanding of mechanisms underlying genetic associations.
منابع مشابه
Allelic Variation of VRN-1 Locus in Iranian Wheat Landraces
Wheat is a crop with spring and winter types and wide adaptability to different climate conditions. The wide adaptability of wheat is mainly controlled by three groups of genetic factors and among them vernalization (VRN) genes play pivotal role in determining spring and winter types. In this study, 395 Iranian wheat landraces were characterized with specific primer pairs designed based on VRN-...
متن کاملComposite Effects of Polymorphisms near Multiple Regulatory Elements Create a Major-Effect QTL
Many agriculturally, evolutionarily, and medically important characters vary in a quantitative fashion. Unfortunately, the genes and sequence variants accounting for this variation remain largely unknown due to a variety of biological and technical challenges. Drosophila melanogaster contains high levels of sequence variation and low linkage disequilibrium, allowing us to dissect the effects of...
متن کاملAdvances in Genetical Genomics of Plants
Natural variation provides a valuable resource to study the genetic regulation of quantitative traits. In quantitative trait locus (QTL) analyses this variation, captured in segregating mapping populations, is used to identify the genomic regions affecting these traits. The identification of the causal genes underlying QTLs is a major challenge for which the detection of gene expression differe...
متن کاملClose encounters of the 3C kind: long-range chromatin interactions and transcriptional regulation.
The transcriptional output of genes in higher eukaryotes is frequently modulated by cis-regulatory DNA elements like enhancers. On the linear chromatin template these elements can be located hundreds of kilobases away from their target gene and for a long time it was a mystery how these elements communicate. For example, in the beta-globin locus the main regulatory element, the Locus Control Re...
متن کاملGenetic Determinants of RNA Editing Levels of ADAR Targets in Drosophila melanogaster
RNA editing usually affects only a fraction of expressed transcripts and there is a vast amount of variation in editing levels of ADAR (adenosine deaminase, RNA-specific) targets. Here we explore natural genetic variation affecting editing levels of particular sites in 81 natural strains of Drosophila melanogaster. The analysis of associations between editing levels and single-nucleotide polymo...
متن کامل